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Patterns formed by spiral pairs in oscillatory media

S. Komineas, F. Heilmann, and L. Kramer
Physikalisches Institut, Universit@ayreuth, D-95440 Bayreuth, Germany
(Received 21 July 2000; published 19 December 2000

We investigate by numerical simulations the dynamics of spiral pairs which are found in oscillatory and
excitable media as described by the complex Ginzburg-Landau equation. Our simulations include two spiral
pairs which approach each other and interact. The spirals typically exchange partners and form new pairs. This
type of interaction gives rise to some patterns: a right-angle scattering pattern, a rotating state coming out of
two traveling pairs, and a symmetric spiral lattice. The scenarios are compared to other conservative and
dissipative systems where scattering at right angles is also observed.
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Spiral waves are point defects in two dimensig2®) the field and are stable with respect to perturbations. The
which are observed in oscillatory and excitable media. Exbehavior of a system of spirals depends substantially on the
amples of such media are some chemical oscillatidis  values of the parameters of the equation. One of the interest-
thermal convection in binary fluidg2], and nematic liquid ing cases is the formation of a vortex glass whose statics and
crystals[3]. dynamics has attracted much interg

A simple mathematical modeling for oscillatory systems  The states formed by two spirals have also been investi-
is provided by the complex Ginzburg-Landau equationgated[7]. For a certain domain of thie-c parameter space,
(CGLE) two spirals interact to form a bound state. In particular, a

spiral and an antispiral propagate perpendicular to the line
%=A+(1+ib)AA—(1+ic)|A|2A. (1) connecting t_heir cores. _The distance between t_hem rema?ns

at constant during the motion and the bound state is stable with

) ) , respect to small changes of this distance. The equilibrium

The complex fieldA describes the amplitude and phase of gistance and the velocity of the bound pair is determined by

the modulations of the pattelii,4]. Hereb andc are real o harameters of Eq1). The velocity diminishes with in-
parameters and denotes the Laplacian operator. The CGLE ¢rga5ing equilibrium distance. We also mention that it does
plays the role of a normal form in the vicinity of a supercriti- 4t seem possible to find a static two-spiral state in a homo-
cal bifurcation to an oscillatory state in spatially extendedgeneous background. On the other hand, two spialsn-
systems and is thus very generql. ) tispirals move around each other. The distance between the
We are interested in the two-dimensional space where Sply,q gpirals and the velocity of the circular motion are similar
ral solutions can be found. An isolated spiral is of the form, ihose for the oppositely charged pairs, at least for large

_ : _ separation of the spirals.
Alp.$)=F(p)explilott ot y(p)l}, o==1, (2) Both bound states described in the preceding paragraph

wherep and ¢ denote the polar coordinates. are actually unstable with respect to thg spontaneous bre_ak-
The functionsF and ¢ have the following asymptotic N9 of the symmetry bgtween the two spirals which results in
behavior: a destruction of the spiral pdi8]. In this case one of the two
spirals dominates the space and the other one is shrunk to its
F(p)—=V1-K% ¢'(p)—k, p—o, coregand becomes a so-called “edge vortei? finite sys-
tems.
F(p)~p, ¢'(p)~p, p—0. (3 In all numerical simulations described below we choose

b=0 andc>0 (the latter is not a restrictionAccording to

The phasep changes by zro along a closed orbit around Ref.[7], bound pairs exist foc=0.845. Forc=1.3 we have
the spiral center wher&=0. We say that the spiral®?) the onset of convective instabilif@]. As a conclusion, spiral
carry a topological charge which can take two values. In pairs exist and are long lived for 0.84&2=<1.3. All results
order to distinguish between the two cases, we shall call thearry over to nonzero values bf(not too large by using the
solution witho=1 a “spiral” and the one withec=—1 an  similarity transform as discussed [ii].
“antispiral.” Away from boundaries the topological charge  The situation which has been described above is reminis-
is conserved,; i.e., spirals can only disappear by annihilatiorent of pairs of topological objects which are predicted to
with an antispiral. The frequency is given hy=—bk? exist in several conservative systems which have topologi-
—c(1—k? where the constank is the asymptotic wave cally nontrivial solutiong10]. For example, the ferromagnet
number of the waves emitted by the spiral. For gi\en, possesses a family of propagating vortex-antivortex pairs
the wave numbek has a unique value which can be deter-with velocities ranging from zero to the velocity of linear
mined numerically{5]. excitations. The velocity is inversely proportional to the dis-

In the appropriate parameter range spiral solutions of Ectance between the vortex and antivortex, at least for widely
(1) are spontaneously formed around a topological defect ofeparated vortices. To complete the picture, two vortices
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FIG. 2. The orhits of the cores of the spirals of Fig. 1. An open
circle denotes the core of a spiral and a solid circle that of an
antispiral. The cores are initially located at poi#tsB, C, andD.

FIG. 1. Time evolution of two spiral pairs, each one being the
mirror image of the other. The first exchange of partners occursance provided that the initial condition is not too far from
between the first and second entries. The symmetry breaking ihat. Each pair is the mirror image of the other and they
visible in the seventh entry and is enhanced afterwards. The firggonsequently have opposite velocities. We let the system
eight pictures are equally spaced in time with="700 time units.  eyolve numerically in time and monitor the orbits of the
The last picture is taken when the system has relaxed, atttime spirals and the antispirals. The pairs move against each other.
=8400. Time increases from left to right and from top to bottom. ta spiral and antispiral in the upper half-plane form a new
Parameter valuesi=0, c=1.2. We use periodic boundary condi- pair and the same happens in the lower half-plane. Subse-
tlgns and the cell hgs d_lmen3|0n3>665 In this figure as well as |n' uently, the two new pairs drift along the vertical axis. The
ilgs. 3 and 4 we give in a gray-scale code the real part of the fiel volution described so far is shown in the entries 1—4 of

' Fig. 1.

The orbits of the cores shown in Fig. 2 help to clarify the
with the same topological charge orbit around each othempicture. We denote by open circles the cores of the spirals
This kind of propagating pairs have been ternsetitonsand  and by solid circles those of the antispirals. Let us follow,
the study of the interaction between solitons of this kind ha.g., the spiral in the upper-right quadrant. It moves initially
led to interesting results. For instance, a head-on collisionio the left under the influence of the nearby antispiral. When
between two solitons gives a right-angle scattering patterrthe pairs approach each other, it feels the influence of the
This kind of scattering seems to be a characteristic dynamiether antispiral, too. Therefore the orbit is curved and the
cal behavior shared by a variety of conservative systemspiral moves in the upward direction. It eventually separates
[11]. Another most striking related case is that of ordinaryfrom its initial partner and follows the new one. The curved
vortex-antivortex pairs in two-dimensional ideal flows. The part of the orbit is quite short, since the interaction between
formation of bound pairs and their interaction has been inspirals is exponentially decaying with the distance. Therefore
vestigated in the limit of point vorticegl2]. Experiments the core passes from the influence of the initial partner to the
[13] and numerical studiegl4] have been done for some final one within a rather short distance. A careful look in Fig.
more complicated situations. A right-angle scattering patteri2 shows that, during the short time that the four spirals come
is also here a typical result of the studies. close together, their cores come shortly closer than the equi-

The interesting results on soliton dynamics have motidibrium distance of a spiral pair.
vated us to investigate the interaction between spiral pairs. The time evolution of the system has to respect the sym-
The line of reasoning is as follows: since spiral pairs aremetries of the equation of motion and of the initial condition.
necessarily traveling, it makes sense to ask what may happén particular, if one makes the assumption that the spirals and
when two pairs move against each other. It is more or lesantispirals will not mutually annihilate during interaction,
clear that some of the results for the solitons are expected tihen the output of the above numerical simulation can be
carry over, at least in a superficial way, to the spiral dynam-<considered as the plausible output which respect the present
ics. symmetries. However the actual result could only be found

Our numerical code implements a pseudospectral algoaumerically.
rithm with typically 256 modes. We simulate two spiral In the simulations we have used periodic boundary con-
pairs, as shown in the first entry of Fig. 1. We use the paditions implying image spirals across the boundaries. Thus,
rameter valuedb=0, c=1.2. The two pairs are initially further evolution of the simulation gives successive colli-
away from each other; therefore, there is no interaction besions of cores when they approach the boundaries. We would
tween them. Each pair quickly relaxes to its equilibrium dis-actually expect each of them to circulate around a quadrant
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FIG. 4. Two spiral-antispiral pairs are shown in the first entry.
The distance between the spirals is chosen sufficiently large so that
the defects repel each other. Each defect follows a spiraling orbit in
a quadrant. The system relaxes to a symmetric lattice. The first five
pictures are equally spaced in time wifh= 2500 time units. The
last picture is taken when the system has almost relaxetl at

FIG. 3. The initial condition is two pairs shifted in the vertical =20 000. Parameter valueb=0, c=0.7. Size of the cell 100
direction with respect to one another and is given in the first picture< 100.
The simulation gives a rotating pair and two “edge vortices.” The
time interval between the first eight picturesds=1000. The last The exact time evolution depends on the initial condition.
picture is taken at timé=20 000 and represents thg final stationary | many simulations the two dominating spirals stay some-
state of the system. Parameter values0, c=1.2. Size of the cell \yhat away from each other and the velocity of rotation is
80x 80. consequently much lower than that shown in Fig. 3. Then the
scenario of Fig. 3 takes much longer time.
of our simulation space undergoing successive exchanges of The scattering scenarios that have been described up to
partners. The simulation for longer times, which is shown innow occur for the values of the parametbrs where bound
the entries 4-9 of Fig. 1, results in a spontaneous breaking ¢fairs of spirals exist and the emitted waves are convectively
the symmetry triggered by unavoidable round-off errors ofstable. From the similarity transform one sees that this is the
the computer calculatior{8]. After a sufficiently long time, case between the curve< b)/(1+ bc)=0.845 and the con-
we end up with two almost static spirals which occupy thevective stability limit(see Fig. 6 of7]).
whole space, while the antispirals have been reduced to their The present numerical results can be compared to those
cores(“edge vortices”) and pushed into the region of the for a ferromagnet. In an analogous numerical simulation in
shock between the dominating spirals. Such asymmetric lathe conservative system, one obtains the formation of a ro-
tices of spirals have been studied and found to be stationafating two-vortex state. However, this state exists only for a
and stable. short time. It is then resolved in favor of the formation of
We are also interested in the time evolution of the coreyortex-antivortex pairs which finally drift away from each
when the initial condition is slightly perturbed. We start a other.
new simulation with the two spiral pairs as in Fig. 1, but the We now move to a different region of tle c parameter
pairs are now slightly shifted with respect to one another irspace where no bound pairs of spirals exist; i.e., we choose
the vertical direction. This situation is analogous to the col-b=0 and 0<c=0.845. An isolated spiral is still a stable
lision between particles with a nonzero impact parameterobject for these parameter values and a spiral and an antispi-
The results are shown in Fig. 3. When the pairs approachal are moving due to their interaction. Their velocities have
they form asymmetric spiral-antispiral pairs in the upper anch tangential component, which is equal for the two spirals. It
lower half-planes. The asymmetry is enhang&ldand finally  also has a radial component, along the line connecting their
the antispirals degenerate into edge vortices. A rotatingenters. This is repulsive for not too small separation be-
bound state of two spirals is formed. This situation is pre-tween the spirals. In contrast to the case of the bound spiral
sented in pictures 6-8 of Fig. 3. In the third entry the twopairs, we expect here no spontaneous symmetry breaking.
antispirals have almost been reduced to their cores. The rén the contrary, any asymmetry of the spiral pair will be
tating motion starts at the sixth entry; that is, the spirals neeguppressef8].
some time, after the destruction of the spiral-antispiral pairs, We choose the parameter values 0, c=0.7. The re-
to organize into the rotating state. The rotating state survivesults of the simulation are shown in Fig. 4. The evolution of
for more than a full rotation and the pair is eventually de-the structure, at its initial stage, resembles that of Fig. 1.
stroyed due to a new symmetry breaking. The final result isHowever, in the present case the spiral and the antispiral of a
shown in the last entry of Fig. 3. We have a spiral dominat-single pair repel each other. One can roughly imagine the
ing the space and three edge vortices which form a stationamgrbit of each spiral, taking into account the interaction of
state. each one with the others as well as with the spirals implied
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50 ; two spots are fused together and then reappear moving on a
direction perpendicular to the initial direction of motion.
Analogous results are found for a different RD sys{ei@].

C\ m The scattering of spots can be compared to our results for
H S the scattering of pairs of spirals. We may claim that a right-
Co e % 5 . B angle scattering behavior has been established in both system
(1) and the spots in RD systems. However, contrary to the
> 0 1 scattering of spots, an effective bouncing back of colliding
D... oA spiral pairs does not seem possible.

On the side of conservative systems, the scattering of soli-
g tons in relativistic systems has been studied for |0hg].
W u One expects that a right-angle scattering will appear generi-
cally in two-dimensional models which have soliton solu-
tions. This includes solitons of the vortex-antivortex type as

-30 50 O 50 well as solitons which obey relativistic dynamifckl].
- Recently, collisions for a class of so-called nontopological
X solitons have been studied in models applying to cosmology

FIG. 5. The orbits of the cores of the spirals of Fig. 4. An open[lg]' nge, |n.add|t|0n to passing through each othgr a.nd a
circle denotes the core of a spiral and a solid circle that of anscatterlng atright angles, one can also have a combination of

antispiral. The cores are initially located at poiAtsB, C, andD. the two cases. That is, the two initial colliding solitons may
split during the collision to give four new ones. This possi-

by the periodic boundary conditions. The orbits followed bybiIity has some similarities with the replication of spots ob-

the four spirals are depicted in Fig. 5. Each defect follows aserved in[ZO]. Herg, the §ubstantial difference is .th"’.‘t spots
spiraling orbit and ends up in the center of the correspondin&E]aB{ re}:,)’llcate while solitons may at most split in two
quadrant. The periodic boundary conditions imply that the alves.

final output is a symmetric spiral lattice. The symmetric lat- In_ conclusmn_, we haye takf_en here advantage of th_e dy-
tice is, according t68] a stationary solution of Eq1) and it namical properties of spiral pairs and have used them in nu-

is stable with respect to nonperiodic perturbations. It Comegwerlcal simulations. We investigate the time evolution of the

up here in a natural way through the interaction process o ystem of two spiral pairs as well as the patterns that are
two spiral pairs. ormed. The results depend not only on the parameters of the

One may also perform simulations similar to the previous\C/:VGI‘r']E (1) er’]t also on the_ m::lalt;]:otn(t:htlor_l; oftj[hel 5|m_u|?t|or_1.
one, but with an asymmetric initial condition. The asymme- € aveb§ 0‘?’” r_1umer|_ce;]ty EI‘ Wot{ entica t:;‘pwa paurs
try may be inserted in the initial conditions in a variety of may combine 1o give a right-angié scattering pattem, resem-

ways. In all the cases that we have investigated the systeming the solitpn sca}ttering. Another po_s§ibility is.the fqrma-
relaxes to the symmetric spiral lattice state provided that th&on Of. a rotating spiral pair frO”_‘ two !n't'al traveling _sp|ral_-
initial asymmetry is not too large. antispiral pairs. One more possibility is the symmetric lattice

The behavior described in the last paragraphs occurs gé)-fb spiralsmobtt?;]ne% in thg alpgrohprigte p?rame:erhrange. We
nerically in the region of theld-c) plane where spirals are observe that the dynamical behavior of spirals have some

stable and no bound pairs exist. The region is confined by thgimilar.ities to the dynamics of vortex-antivortgx pairs in con-
two branches of the curves(-b)/(1+bc)=0.845[7] Servative systems. Furthermore, the scattering behavior of
Let us now compare the results with ihe dyﬁamics ofSPots in reaction-diffusion systems bears similarities to that

spots which have been studied in reaction-diffusi®D) of solitons in relativistic models.

systems[15—17. Two moving spots may collide head-on  S.K. and L.K. thank the Max-Planck Instituterfehysik
and give two different results. In particular, in the model of Komplexer SysteméDresden, Germanywhere part of this
Ref. [15], it is found that two slow spots are “elastically” work was done, for its hospitality. We also acknowledge
scattered. This means that they come to a minimum distancgupport from the TMR program of the EU “patterns, noise
and then bounce back. However, for larger velocities, theand chaos” under Contract No. ERBFMRXCT-960085.
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