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Patterns formed by spiral pairs in oscillatory media
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~Received 21 July 2000; published 19 December 2000!

We investigate by numerical simulations the dynamics of spiral pairs which are found in oscillatory and
excitable media as described by the complex Ginzburg-Landau equation. Our simulations include two spiral
pairs which approach each other and interact. The spirals typically exchange partners and form new pairs. This
type of interaction gives rise to some patterns: a right-angle scattering pattern, a rotating state coming out of
two traveling pairs, and a symmetric spiral lattice. The scenarios are compared to other conservative and
dissipative systems where scattering at right angles is also observed.
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Spiral waves are point defects in two dimensions~2D!
which are observed in oscillatory and excitable media. E
amples of such media are some chemical oscillations@1#,
thermal convection in binary fluids@2#, and nematic liquid
crystals@3#.

A simple mathematical modeling for oscillatory system
is provided by the complex Ginzburg-Landau equat
~CGLE!

]A

]t
5A1~11 ib !DA2~11 ic !uAu2A. ~1!

The complex fieldA describes the amplitude and phase
the modulations of the pattern@1,4#. Here b and c are real
parameters andD denotes the Laplacian operator. The CGL
plays the role of a normal form in the vicinity of a supercri
cal bifurcation to an oscillatory state in spatially extend
systems and is thus very general.

We are interested in the two-dimensional space where
ral solutions can be found. An isolated spiral is of the for

A~r,f!5F~r!exp$ i @vt1sf1c~r!#%, s561, ~2!

wherer andf denote the polar coordinates.
The functionsF and c have the following asymptotic

behavior:

F~r!→A12k2, c8~r!→k, r→`,

F~r!;r, c8~r!;r, r→0. ~3!

The phasef changes by 2ps along a closed orbit aroun
the spiral center whereF50. We say that the spirals~2!
carry a topological charges which can take two values. In
order to distinguish between the two cases, we shall call
solution withs51 a ‘‘spiral’’ and the one withs521 an
‘‘antispiral.’’ Away from boundaries the topological charg
is conserved; i.e., spirals can only disappear by annihila
with an antispiral. The frequency is given byv52bk2

2c(12k2) where the constantk is the asymptotic wave
number of the waves emitted by the spiral. For givenb,c,
the wave numberk has a unique value which can be dete
mined numerically@5#.

In the appropriate parameter range spiral solutions of
~1! are spontaneously formed around a topological defec
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the field and are stable with respect to perturbations. T
behavior of a system of spirals depends substantially on
values of the parameters of the equation. One of the inter
ing cases is the formation of a vortex glass whose statics
dynamics has attracted much interest@6#.

The states formed by two spirals have also been inve
gated@7#. For a certain domain of theb-c parameter space
two spirals interact to form a bound state. In particular
spiral and an antispiral propagate perpendicular to the
connecting their cores. The distance between them rem
constant during the motion and the bound state is stable
respect to small changes of this distance. The equilibri
distance and the velocity of the bound pair is determined
the parameters of Eq.~1!. The velocity diminishes with in-
creasing equilibrium distance. We also mention that it do
not seem possible to find a static two-spiral state in a hom
geneous background. On the other hand, two spirals~or an-
tispirals! move around each other. The distance between
two spirals and the velocity of the circular motion are simi
to those for the oppositely charged pairs, at least for la
separation of the spirals.

Both bound states described in the preceding paragr
are actually unstable with respect to the spontaneous br
ing of the symmetry between the two spirals which results
a destruction of the spiral pair@8#. In this case one of the two
spirals dominates the space and the other one is shrunk
core and becomes a so-called ‘‘edge vortex’’~in finite sys-
tems!.

In all numerical simulations described below we choo
b50 andc.0 ~the latter is not a restriction!. According to
Ref. @7#, bound pairs exist forc*0.845. Forc*1.3 we have
the onset of convective instability@9#. As a conclusion, spira
pairs exist and are long lived for 0.845&c&1.3. All results
carry over to nonzero values ofb ~not too large! by using the
similarity transform as discussed in@7#.

The situation which has been described above is remi
cent of pairs of topological objects which are predicted
exist in several conservative systems which have topolo
cally nontrivial solutions@10#. For example, the ferromagne
possesses a family of propagating vortex-antivortex p
with velocities ranging from zero to the velocity of linea
excitations. The velocity is inversely proportional to the d
tance between the vortex and antivortex, at least for wid
separated vortices. To complete the picture, two vorti
©2000 The American Physical Society03-1
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with the same topological charge orbit around each oth
This kind of propagating pairs have been termedsolitonsand
the study of the interaction between solitons of this kind h
led to interesting results. For instance, a head-on collis
between two solitons gives a right-angle scattering patt
This kind of scattering seems to be a characteristic dyna
cal behavior shared by a variety of conservative syste
@11#. Another most striking related case is that of ordina
vortex-antivortex pairs in two-dimensional ideal flows. T
formation of bound pairs and their interaction has been
vestigated in the limit of point vortices@12#. Experiments
@13# and numerical studies@14# have been done for som
more complicated situations. A right-angle scattering patt
is also here a typical result of the studies.

The interesting results on soliton dynamics have m
vated us to investigate the interaction between spiral pa
The line of reasoning is as follows: since spiral pairs
necessarily traveling, it makes sense to ask what may hap
when two pairs move against each other. It is more or l
clear that some of the results for the solitons are expecte
carry over, at least in a superficial way, to the spiral dyna
ics.

Our numerical code implements a pseudospectral a
rithm with typically 256 modes. We simulate two spir
pairs, as shown in the first entry of Fig. 1. We use the
rameter valuesb50, c51.2. The two pairs are initially
away from each other; therefore, there is no interaction
tween them. Each pair quickly relaxes to its equilibrium d

FIG. 1. Time evolution of two spiral pairs, each one being t
mirror image of the other. The first exchange of partners occ
between the first and second entries. The symmetry breakin
visible in the seventh entry and is enhanced afterwards. The
eight pictures are equally spaced in time withdt5700 time units.
The last picture is taken when the system has relaxed, at timt
58400. Time increases from left to right and from top to botto
Parameter values:b50, c51.2. We use periodic boundary cond
tions and the cell has dimensions 65365. In this figure as well as in
Figs. 3 and 4 we give in a gray-scale code the real part of the fi
A.
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tance provided that the initial condition is not too far fro
that. Each pair is the mirror image of the other and th
consequently have opposite velocities. We let the sys
evolve numerically in time and monitor the orbits of th
spirals and the antispirals. The pairs move against each o
The spiral and antispiral in the upper half-plane form a n
pair and the same happens in the lower half-plane. Su
quently, the two new pairs drift along the vertical axis. T
evolution described so far is shown in the entries 1–4
Fig. 1.

The orbits of the cores shown in Fig. 2 help to clarify th
picture. We denote by open circles the cores of the spi
and by solid circles those of the antispirals. Let us follo
e.g., the spiral in the upper-right quadrant. It moves initia
to the left under the influence of the nearby antispiral. Wh
the pairs approach each other, it feels the influence of
other antispiral, too. Therefore the orbit is curved and
spiral moves in the upward direction. It eventually separa
from its initial partner and follows the new one. The curv
part of the orbit is quite short, since the interaction betwe
spirals is exponentially decaying with the distance. Theref
the core passes from the influence of the initial partner to
final one within a rather short distance. A careful look in F
2 shows that, during the short time that the four spirals co
close together, their cores come shortly closer than the e
librium distance of a spiral pair.

The time evolution of the system has to respect the sy
metries of the equation of motion and of the initial conditio
In particular, if one makes the assumption that the spirals
antispirals will not mutually annihilate during interaction
then the output of the above numerical simulation can
considered as the plausible output which respect the pre
symmetries. However the actual result could only be fou
numerically.

In the simulations we have used periodic boundary c
ditions implying image spirals across the boundaries. Th
further evolution of the simulation gives successive co
sions of cores when they approach the boundaries. We w
actually expect each of them to circulate around a quad

rs
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FIG. 2. The orbits of the cores of the spirals of Fig. 1. An op
circle denotes the core of a spiral and a solid circle that of
antispiral. The cores are initially located at pointsA, B, C, andD.
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of our simulation space undergoing successive exchange
partners. The simulation for longer times, which is shown
the entries 4–9 of Fig. 1, results in a spontaneous breakin
the symmetry triggered by unavoidable round-off errors
the computer calculations@8#. After a sufficiently long time,
we end up with two almost static spirals which occupy t
whole space, while the antispirals have been reduced to
cores~‘‘edge vortices’’! and pushed into the region of th
shock between the dominating spirals. Such asymmetric
tices of spirals have been studied and found to be statio
and stable.

We are also interested in the time evolution of the co
when the initial condition is slightly perturbed. We start
new simulation with the two spiral pairs as in Fig. 1, but t
pairs are now slightly shifted with respect to one anothe
the vertical direction. This situation is analogous to the c
lision between particles with a nonzero impact parame
The results are shown in Fig. 3. When the pairs approa
they form asymmetric spiral-antispiral pairs in the upper a
lower half-planes. The asymmetry is enhanced@8# and finally
the antispirals degenerate into edge vortices. A rota
bound state of two spirals is formed. This situation is p
sented in pictures 6–8 of Fig. 3. In the third entry the tw
antispirals have almost been reduced to their cores. The
tating motion starts at the sixth entry; that is, the spirals n
some time, after the destruction of the spiral-antispiral pa
to organize into the rotating state. The rotating state surv
for more than a full rotation and the pair is eventually d
stroyed due to a new symmetry breaking. The final resu
shown in the last entry of Fig. 3. We have a spiral domin
ing the space and three edge vortices which form a statio
state.

FIG. 3. The initial condition is two pairs shifted in the vertic
direction with respect to one another and is given in the first pictu
The simulation gives a rotating pair and two ‘‘edge vortices.’’ T
time interval between the first eight pictures isdt51000. The last
picture is taken at timet520 000 and represents the final stationa
state of the system. Parameter values:b50, c51.2. Size of the cell
80380.
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The exact time evolution depends on the initial conditio
In many simulations the two dominating spirals stay som
what away from each other and the velocity of rotation
consequently much lower than that shown in Fig. 3. Then
scenario of Fig. 3 takes much longer time.

The scattering scenarios that have been described u
now occur for the values of the parametersb,c where bound
pairs of spirals exist and the emitted waves are convectiv
stable. From the similarity transform one sees that this is
case between the curve (c2b)/(11bc).0.845 and the con-
vective stability limit ~see Fig. 6 of@7#!.

The present numerical results can be compared to th
for a ferromagnet. In an analogous numerical simulation
the conservative system, one obtains the formation of a
tating two-vortex state. However, this state exists only fo
short time. It is then resolved in favor of the formation
vortex-antivortex pairs which finally drift away from eac
other.

We now move to a different region of theb-c parameter
space where no bound pairs of spirals exist; i.e., we cho
b50 and 0,c&0.845. An isolated spiral is still a stabl
object for these parameter values and a spiral and an ant
ral are moving due to their interaction. Their velocities ha
a tangential component, which is equal for the two spirals
also has a radial component, along the line connecting t
centers. This is repulsive for not too small separation
tween the spirals. In contrast to the case of the bound sp
pairs, we expect here no spontaneous symmetry break
On the contrary, any asymmetry of the spiral pair will b
suppressed@8#.

We choose the parameter valuesb50, c50.7. The re-
sults of the simulation are shown in Fig. 4. The evolution
the structure, at its initial stage, resembles that of Fig.
However, in the present case the spiral and the antispiral
single pair repel each other. One can roughly imagine
orbit of each spiral, taking into account the interaction
each one with the others as well as with the spirals impl

.

FIG. 4. Two spiral-antispiral pairs are shown in the first ent
The distance between the spirals is chosen sufficiently large so
the defects repel each other. Each defect follows a spiraling orb
a quadrant. The system relaxes to a symmetric lattice. The first
pictures are equally spaced in time withdt52500 time units. The
last picture is taken when the system has almost relaxedt
550 000. Parameter values:b50, c50.7. Size of the cell 100
3100.
3-3
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by the periodic boundary conditions. The orbits followed
the four spirals are depicted in Fig. 5. Each defect follow
spiraling orbit and ends up in the center of the correspond
quadrant. The periodic boundary conditions imply that
final output is a symmetric spiral lattice. The symmetric l
tice is, according to@8# a stationary solution of Eq.~1! and it
is stable with respect to nonperiodic perturbations. It com
up here in a natural way through the interaction process
two spiral pairs.

One may also perform simulations similar to the previo
one, but with an asymmetric initial condition. The asymm
try may be inserted in the initial conditions in a variety
ways. In all the cases that we have investigated the sys
relaxes to the symmetric spiral lattice state provided that
initial asymmetry is not too large.

The behavior described in the last paragraphs occurs
nerically in the region of the (b-c) plane where spirals ar
stable and no bound pairs exist. The region is confined by
two branches of the curve (c2b)/(11bc).0.845@7#.

Let us now compare the results with the dynamics
spots which have been studied in reaction-diffusion~RD!
systems@15–17#. Two moving spots may collide head-o
and give two different results. In particular, in the model
Ref. @15#, it is found that two slow spots are ‘‘elastically’
scattered. This means that they come to a minimum dista
and then bounce back. However, for larger velocities,

FIG. 5. The orbits of the cores of the spirals of Fig. 4. An op
circle denotes the core of a spiral and a solid circle that of
antispiral. The cores are initially located at pointsA, B, C, andD.
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two spots are fused together and then reappear moving
direction perpendicular to the initial direction of motion
Analogous results are found for a different RD system@16#.

The scattering of spots can be compared to our results
the scattering of pairs of spirals. We may claim that a rig
angle scattering behavior has been established in both sy
~1! and the spots in RD systems. However, contrary to
scattering of spots, an effective bouncing back of collidi
spiral pairs does not seem possible.

On the side of conservative systems, the scattering of s
tons in relativistic systems has been studied for long@18#.
One expects that a right-angle scattering will appear gen
cally in two-dimensional models which have soliton sol
tions. This includes solitons of the vortex-antivortex type
well as solitons which obey relativistic dynamics@11#.

Recently, collisions for a class of so-called nontopologi
solitons have been studied in models applying to cosmol
@19#. Here, in addition to passing through each other an
scattering at right angles, one can also have a combinatio
the two cases. That is, the two initial colliding solitons m
split during the collision to give four new ones. This pos
bility has some similarities with the replication of spots o
served in@20#. Here, the substantial difference is that spo
may replicate while solitons may at most split in tw
‘‘halves.’’

In conclusion, we have taken here advantage of the
namical properties of spiral pairs and have used them in
merical simulations. We investigate the time evolution of t
system of two spiral pairs as well as the patterns that
formed. The results depend not only on the parameters o
CGLE ~1! but also on the initial conditions of the simulation
We have shown numerically that two identical spiral pa
may combine to give a right-angle scattering pattern, res
bling the soliton scattering. Another possibility is the form
tion of a rotating spiral pair from two initial traveling spira
antispiral pairs. One more possibility is the symmetric latt
of spirals obtained in the appropriate parameter range.
observe that the dynamical behavior of spirals have so
similarities to the dynamics of vortex-antivortex pairs in co
servative systems. Furthermore, the scattering behavio
spots in reaction-diffusion systems bears similarities to t
of solitons in relativistic models.
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